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Abstract

Blurring the line between software and hardware, re-
configurable devices strike a balance between the raw high
speed of custom silicon and the post-fabrication flexibility
of general-purpose processors. While this flexibility is a
boon for embedded system developers, who can now rapidly
prototype and deploy solutions with performance approach-
ing custom designs, this results in a system development
methodology where functionality is stitched together from
a variety of “soft IP cores,” often provided by multiple ven-
dors with different levels of trust. Unlike traditional soft-
ware where resources are managed by an operating system,
soft IP cores necessarily have very fine grain control over
the underlying hardware. To address this problem, the em-
bedded systems community requires novel security primi-
tives which address the realities of modern reconfigurable
hardware. We propose an isolation primitive, moats and
drawbridges, that are built around four design properties:
logical isolation, interconnect traceability, secure reconfig-
urable broadcast, and configuration scrubbing. Each of
these is a fundamental operation with easily understood for-
mal properties, yet maps cleanly and efficiently to a wide va-
riety of reconfigurable devices. We carefully quantify the re-
quired overheads on real FPGAs and demonstrate the utility
of our methods by applying them to the practical problem of
memory protection.

1 Introduction

Reconfigurable hardware, such as a Field Programmable
Gate Array (FPGA), provides a programmable substrate
onto which descriptions of circuits can be loaded and exe-
cuted at very high speeds. Because they are able to provide
a useful balance between performance, cost, and flexibil-
ity, many critical embedded systems make use of FPGAs
as their primary source of computation. For example, the
aerospace industry relies on FPGAs to control everything
from satellites to the Mars Rover. Their circuit-level flexi-
bility allows system functionality to be updated arbitrarily
and remotely. Real-time and military projects, such as the
Joint Strike Fighter, make frequent use of FPGAs because
they provide both high-performance and well-defined tim-
ing behavior, but they do not require the costly fabrication
of custom chips.
FPGA technology is now the leading design driver for

almost every single foundry1 meaning that they enjoy the
benefits of production on a massive scale (reduced cost, bet-
ter yield, difficult to tamper with), yet developers are free
to deploy their own custom circuit designs by configuring
the device in the appropriate ways. This has significantly
lowered the primary impediment to hardware development,
cost, and as such we are now seeing an explosion of recon-
figurable hardware based designs in everything from face

1A foundry is a wafer production and processing plant available on a
contract basis to companies that do not have wafer fab capability of their
own
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recognition systems [39], to wireless networks [42], to in-
trusion detection systems [20], to supercomputers [5]. In
fact it is estimated that in 2005 alone there were over 80,000
different commercial FPGA designs projects started. [36]
Unfortunately, while the economics of the semiconductor
industry has helped to drive the widespread adoption of re-
configurable devices in a variety of critical systems, it is
not yet clear that such devices, and the design flows used to
configure them, are actually trustworthy.

Reconfigurable systems are typically cobbled together
from a collection of exiting modules (called cores) in order
to save both time and money. Although ideally each of these
cores would be formally specified, tested, and verified by a
highly trusted party, in reality, such a development model
cannot hope to keep up with the exponential increases in cir-
cuit area and performance made possible by Moore’s Law.
Unlike uni-processor software development, where the pro-
gramming model remains fixed as transistor densities in-
crease, FPGA developers must explicitly take advantage of
denser devices through changes in their design. Given that
embedded design is driven in large part by the demand for
new features and the desire to exploit technological scaling
trends, there is a constant pressure to mix everything on a
single chip: from the most critical functionality to the latest
fad. Each of these cores runs “naked” on the reconfigurable
device (i.e., without the benefit of an operating system or
other intermediate layer), and it is possible that this mixing
of trust levels could be silently exploited by an adversary
with access to any point in the design flow (including de-
sign tools or implemented cores). In an unrestricted design
flow, even answering the question of “are these two cores
capable of communication” is computationally difficult to
answer.

Consider a more concrete example, a system with two
soft-processor cores and an AES encryption engine shar-
ing a single FPGA. Each of these three cores requires ac-
cess to off-chip memory to store and retrieve data. How
can we ensure that the encryption key for one of the pro-
cessors cannot be obtained by the other processor by either
reading the key from external memory or directly from the
encryption core itself? There is no virtual memory on these
systems, and after being run through an optimizing CAD
tool the resulting circuit is a single entangled mess of gates
and wires. To prevent the key from being read directly from
the encryption core itself, we must find some way to iso-
late the encryption engine from the other cores at the gate
level. To protect the key in external memory, we need to
implement a memory protection module, we need to en-
sure that each and every memory access goes through this
monitor, and we need to ensure that all cores are commu-
nicating only through their specified interfaces. To ensure
these properties hold at even the lowest levels of implemen-
tation (after all the design tools have finished their transfor-

mations), we argue that slight modifications in the design
methods and tools can enable the rapid static verification
of finished FPGA bitstreams2. The techniques presented in
this paper are steps towards a cohesive reconfigurable sys-
tem design methodology that explicitly supports cores with
varying levels of trust and criticality – all sharing a single
physical device.
Specifically, we present the idea of Moats and Draw-

bridges, a statically verifiable method to provide isolation
and physical interface compliance for multiple cores on a
single reconfigurable chip. The key idea of the Moat is to
provide logical and physical isolation by separating cores
into different areas of the chip with “dead” channels be-
tween them that can be easily verified. Note that this does
not require a specialized physical device; rather, this work
only assumes the use of commercially available commodity
parts. Given that we need to interconnect our cores at the
proper interfaces (Drawbridges), we introduce interconnect
tracing as a method for verifying that interfaces carrying
sensitive data have not been tapped or routed improperly to
other cores or I/O pads. Furthermore, we present a tech-
nique, configuration scrubbing, for ensuring that remnants
of a prior core do not linger following a partial reconfigura-
tion of the system to enable object reuse. Once we have a
set of drawbridges, we need to enable legal inter-core com-
munication. We describe two secure reconfigurable com-
munication architectures that can be easily mapped into the
unused moat areas (and statically checked for isolation), and
we quantify the implementation trade-offs between them
in terms of complexity of analysis and performance. Fi-
nally, to demonstrate the efficacy of our techniques, we ap-
ply them to a memory protection scheme that enforces the
legal sharing of off-chip memory between multiple cores.

2 Reconfigurable Systems

As mentioned in Section 1, a reconfigurable system is
typically constructed piecemeal from a set of existing mod-
ules (called cores) in order to save both time and money;
rarely does one design a full system from scratch. One
prime example of a module that is used in a variety of con-
texts is a soft-processor. A soft-processor is simply a con-
figuration of logical gates that implements the functionality
of a processor using the reconfigurable logic of an FPGA.
A soft-processor, and other intellectual property (IP) cores3

such as AES implementations and Ethernet controllers, can

2bitstreams are the term for the detailed configuration files that encode
the exact implementation of a circuit on reconfigurable hardware – in many
ways they are analogous to a statically linked executable on a traditional
microprocessor

3Since designing reconfigurable modules is costly, companies have
developed several schemes to protect this valuable intellectual property,
which we discuss in Section 6.



be assembled together to implement the desired function-
ality. Cores may come from design reuse, but more often
than not they are purchased from third party vendors, gen-
erated automatically as the output of some design tool, or
even gathered from open source repositories. While indi-
vidual cores such as encryption engines may be formally
verified [30], a malicious piece of logic or compromised
design tool may be able to exploit low level implementa-
tion details to quietly eavesdrop on, or interfere with, trusted
logic. As a modern design may implement millions of logi-
cal gates with tens of millions of interconnections, the goal
of this paper is to explore design techniques that will allow
the inclusion of both trusted and untrusted cores on a single
chip, without the requirement that expensive static verifica-
tion be employed over the entire finished design. Such ver-
ification of a large and complex design requires reverse en-
gineering, which is highly impractical because many com-
panies keep details about their bit-streams proprietary.
Increasingly we are seeing reconfigurable devices

emerge as the flexible and high-performance workhorses
inside a variety of high performance embedded computing
systems [4, 9, 11, 22, 35, 45], but to understand the potential
security issues, we need to build on an understanding of at
least a simplified modern FPGA design flow. In this section
we describe a modern device, a typical design flow, and the
potential threats that our techniques are expected to handle.

2.1 Reconfigurable Hardware

FPGAs lie along a continuum between general-purpose
processors and application-specific integrated circuits
(ASICs). While general purpose processors can execute any
program, this generality comes at the cost of serialized ex-
ecution. On the other hand, ASICs can achieve impressive
parallelism, but their function is literally hard wired into the
device. The power of reconfigurable systems lies in their
ability to flexibly customize an implementation down at the
level of individual bits and logic gates without requiring
a custom piece of silicon. This can often result in perfor-
mance improvements on the order of 100x as compared to,
per unit silicon, a similar microprocessor [7, 10, 50].
The growing popularity of reconfigurable logic has

forced practitioners to begin to consider security implica-
tions, but as of yet there is no set of best design practices to
guide their efforts. Furthermore, the resource constrained
nature of embedded systems is perceived to be a challenge
to providing a high level of security [26]. In this paper
we describe a set of low level methods that a) allow effec-
tive reasoning about high level system properties, b) can be
supported with minimal changes to existing tool flows, c)
can be statically verified with little effort, d) incur relatively
small area and performance overheads, and e) can be used
with commercial off-the-shelf parts. The advantage of de-

veloping security primitives for FPGAs is that we can im-
mediately incorporate our primitives into the reconfigurable
design flow today, and we are not dependent on the often re-
luctant industry to modify the design of their silicon.

2.2 Mixed-Trust Design Flows

Figure 1 shows a few of the many different design flows
used to compose a single modern embedded system. The
reconfigurable implementation relies on a large number of
sophisticated software tools that have been created by many
different people and organizations. Soft IP cores, such as an
AES core, can be distributed in the form of Hardware De-
scription Language (HDL), netlists4 or a bitstream. These
cores can be designed by hand, or they can be automatically
generated by computer programs. For example, the Xil-
inx Embedded Development Kit (EDK) [53] software tool
generates soft microprocessors from C code. Accel DSP
[17] translates MATLAB [48] algorithms into HDL, logic
synthesis translates this HDL into a netlist, a synthesis tool
uses a place-and-route algorithm to convert this netlist into
a bitstream, with the final result being an implementation of
a specialized signal processing core.
Given that all of these different design tools produce a set

of inter-operating cores, you can only trust your final system
as much as you trust your least-trusted design path. If there
is a critical piece of functionality, e.g. a unit that protects
and operates on secret keys, there is no way to verify that
this core cannot be snooped on or tampered without a set of
isolation strategies.
The subversion of design tools could easily result in ma-

licious hardware being loaded onto the device. In fact, ma-
jor design tool developers have few or no checks in place
to ensure that attacks on specific functionality are not in-
cluded. However, just to be clear, we are not proposing
a method that makes possible the use of subverted design
tools on a trusted core. Rather, we are proposing a method
by which small trusted cores, developed with trusted tools
(perhaps using in-house tools which are not fully optimized
for performance5) can be safely combined with untrusted
cores.

2.3 Motivating Examples

We have already discussed the example of a system with
two processor cores and an encryption core. The goal of our
methods is to prevent the encryption key for one of the pro-
cessors from being obtained by the other processor by either

4Essentially a list of logical gates and their interconnections
5FPGA manufacturers such as Xilinx provide signed cores that can be

trusted by embedded designers, while those freely available cores obtained
from sources such as OpenCores are considered to be less trustworthy. The
development of a trusted tool chain or a trusted core is beyond the scope
of this paper.
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Figure 1. A Modern FPGA-based Embedded System: Distinct cores with different pedigrees and
varied trust requirements find themselves occupying the same silicon. Reconfigurable logic, hard
and soft processor cores, blocks of SRAM, and other soft IP cores all share the FPGA and the same
off-chip memory. How can we ensure that the encryption key for one of the processors cannot be
obtained by the other processor by either reading the key from external memory or directly from the
encryption core itself?

reading the key from external memory or directly from the
encryption core itself.

Aviation – Both military and commercial sectors rely
on commercial off-the-shelf (COTS) reconfigurable com-
ponents to save time and money. Consider the example
of avionics in military aircraft in which sensitive target-
ing data is processed on the same device as less sensitive
maintenance data. In such military hardware systems, cer-
tain processing components are “cleared” for different lev-
els of data. Since airplane designs must minimize weight, it
is impractical to have a separate device for every function.
Our security primitives can facilitate the design of military
avionics by providing separation of modules that must be
integrated onto a single device.

Computer Vision – In the commercial world, consider a
video surveillance system that has been designed to protect
privacy. Intelligent video surveillance systems can iden-
tify human behavior that is potentially suspicious, and this
behavior can be brought to the attention of a human op-
erator to make a judgment [40] [21]. IBM’s PeopleVision
project has been developing such a video surveillance sys-
tem [46] that protects the privacy of individuals by blurring
their faces depending on the credentials of the viewer (e.g.,

security guards vs. maintenance technicians). FPGAs are
a natural choice for any streaming application because they
can provide deep regular pipelines of computation, with no
shortage of parallelism. Implementing such a system would
require at least three cores on the FPGA: a video interface
for decoding the video stream, a redaction mechanism for
blurring faces in accordance with a policy, and a network
interface for sending the redacted video stream to the se-
curity guard’s station. Each of these modules would need
buffers of off-chip memory to function, and our methods
could prevent sensitive information from being shared be-
tween modules improperly (e.g. directly between the video
interface and the network). While our techniques could not
verify the correct operation of the redaction core, they could
ensure that only the connections necessary for legal com-
munication between cores are made.

Now that we have described a high level picture of the
problem we are attempting to address, we present our two
concepts, moats and drawbridges, along with the details of
how each maps to a modern reconfigurable device. In par-
ticular, for each approach we specify the threats that it ad-
dresses, the details of the technique and its implementation,
and the overheads involved in its use. Finally, in Section 5,
we show how these low-level protection mechanisms can be
used in the implementation of a higher-level memory pro-



tection primitive.

3 Physical Isolation with Moats

As discussed in Section 2, a strong notion of isolation
is lacking in current reconfigurable hardware design flows,
yet one is needed to be certain that cores are not snooping
on or interfering with each other. Before we can precisely
describe the problem that moats attempt to solve, we need
to begin with a brief description of how routing works (and
the function it serves) in a modern FPGA.
On a modern FPGA, the vast majority of the actual sili-

con area is taken up by interconnect (approximately 90%).
The purpose of this interconnect is to make it easy to con-
nect logical elements together so that any circuit can be re-
alized. For example, the output of one NAND gate may be
routed to the input of another, or the address wires from a
soft-processor may be routed to an I/O pad connected to ex-
ternal memory. The routing is completely static: a virtual
wire is created from input to output, but that signal may be
routed to many different places simultaneously (e.g., one
output to many inputs or vice versa).
The rest of the FPGA is a collection of programmable

gates (implemented as small lookup-tables called LUTs),
flip-flops for timing and registers, and I/O blocks (IOB) for
transferring data into and out of the device. A circuit can
be mapped to an FPGA by loading the LUTs and switch-
boxes with a configuration, a method that is analogous to
the way a traditional circuit might be mapped to a set of
logical gates. An FPGA is programmed using a bitstream.
This binary data is loaded into the FPGA to execute a partic-
ular task. The bitstream contains all the information needed
to provide a functional device, such as the configuration in-
terface and the internal clock cycle supported by the device.
Without an isolation primitive, it is very difficult to pre-

vent a connection between two cores from being estab-
lished. Place-and-route software uses performance as an
objective function in its optimization strategy, which can
result in the logical elements and the interconnections of
two cores to be intertwined. Figure 3 makes the scope of
the problem more clear. The left hand of Figure 3 shows
the floor plan of an FPGA with two small cores (soft pro-
cessors) mapped onto it. The two processors overlap sig-
nificantly in several areas of the chip. Ensuring that the
two never communicate requires that we trace every single
wire to ensure that only the proper connections are made.
Such verification of a large and complex design requires
reverse engineering, which is highly impractical because
many companies keep the necessary details about their bit-
streams secret. With moats, fewer proprietary details about
the bitstream are needed to accomplish this verification.
The difficulty of this problem is made more clear by the
zoom-in on the right of Figure 3. The zoom-in shows a

single switch box, the associated LUTs (to the right of the
switch box), and all the wires that cross through that one
small portion of the chip. A modern FPGA contains on the
order of 20,000 or more such boxes.
Isolation is required in order to protect the confidential-

ity and integrity of a core’s data, and helps to prevent inter-
ference with a core’s functionality. Our technique allows a
very simple static check to verify that, at least at the routing
layer, the cores are sufficiently isolated.

3.1 Building Moats

Moats are a novel method of enhancing the security of
FPGA systems via the physical isolation of cores. Our
approach involves surrounding each core with a “moat”
that blocks wiring connectivity from the outside. The core
can only communicate with the outside world via a “draw-
bridge”, which is a precisely defined path to the outside
world.
One straightforward way to accomplish this is to align

the routing tracks used by each of these modules and simply
disable the switches near the moat boundaries. The prob-
lem with this simple approach is that, for the purposes of
improving area and timing efficiency, modern FPGA archi-
tectures often support staggered, multiple track segments.
For example, the Virtex platform supports track segments
with lengths 1, 2 and 6, where the length is determined
by measuring the number of Configuration Logic Blocks
(CLBs) the segment crosses. For example, a length 6 seg-
ment will span 6 CLBs, providing a more direct connec-
tion by skipping unnecessary switch boxes along the rout-
ing path. Moreover, many platforms such as Virtex support
“longline” segments, which span the complete row or col-
umn of the CLB array.
Figure 4 illustrates our moat architecture. If we allow the

design tool to make use of segment lengths of one and two,
the moat size must be at least two segments wide in order
to successfully isolate two cores (otherwise signals could
hop the moats because they would not require a switch box
in the moat). To statically check that a moat is sound, the
following properties are sufficient.

1. The target core is completely surrounded by moat of
width at least w

2. The target core does not make any use of routing seg-
ments longer than length w

In fact, both of these properties are easy to inspect on
an FPGA. We can tell if a switch box is part of a moat by
simply checking that it is completely dead (i.e., all the rout-
ing transistors are configured to be disconnected). We can
check the second property by examining all of the long line
switch boxes to ensure that they are unused. These are easy
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Figure 2. A simplified representation of an FPGA fabric is on the left. Configurable Logic Blocks
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to find because they are tied to the physical FPGA design
and are not a function of the specific core on the FPGA.

3.2 A Performance/Area Trade-off

On an FPGA, the delay of a connection depends on the
number of switch boxes it must pass through rather than the
total length. Although large moats consume a great deal of
chip area (because they reserve switch boxes without mak-
ing use of them to perform an operation), they allow the
design tools to make use of longer segments, which helps
with the area and performance of each individual core. On
the other hand, small moats require less chip area (for the
moat itself), but having to use small segments negatively
affects the area and performance of the cores.
A set of experiments is needed to understand the trade-

offs between the size of the moats, the number of cores that
can be protected using moats, and the performance and area
implications for moat protection.

3.3 The Effect of Constrained Routing

We begin by quantifying the effect of constraining the
tools to generate only configurations that do not use any
routing segments longer than length w. The width of the
moat could be any size, but the optimal sizes are dictated by
the length of the routing segments. As mentioned before,
FPGAs utilize routing segments of different sizes, most
commonly 1, 2, 6 and long lines. If we could eliminate
the long lines, then we would require a size 6 moat for pro-

tecting a core. By eliminating long lines and hex lines, we
only need a moat of size 2, and so on.
In order to study the impact of eliminating certain long

length segments on routing quality, we compare the routing
quality of the MCNC benchmarks [32] on different segment
configurations. We use the Versatile Placement and Rout-
ing (VPR) toolkit developed by the University of Toronto
for such experiments. VPR provides mechanisms for exam-
ining trade-offs between different FPGA architectures and
is popular within the research community [3]. Its capabili-
ties to define detailed FPGA routing resources include sup-
port for multiple segment routing tracks and the ability for
the user to define the distribution of the different segment
lengths. It also includes a realistic cost model which pro-
vides a basis for the measurement of the quality of the rout-
ing result.
The effect of the routing constraints on performance and

area can vary across different cores. Therefore, we route the
20 biggest applications from the MCNC benchmark set [32]
(the de facto standard for such experiments) using four dif-
ferent configurations. The baseline configuration supports
segments with length 1, 2, 6 and longlines. The distribu-
tion of these segments on the routing tracks are 8%, 20%,
60% and 12% respectively, which is similar to the Xilinx
Virtex II platform. The other three configurations are de-
rived from the baseline configurations by eliminating the
segments with longer lengths. In other words, configuration
1-2-6 will have no longlines, configuration 1-2 will support
segments of length 1 and 2, and configuration 1 will only
support segments of length 1.
After performing placement and routing, we measure the
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Figure 3. A simple two-core system mapped onto a small FPGA. The zoom-in to the right shows
the wiring complexity at each and every switch-box on the chip. To statically analyze a large FPGA
with 10s of cores and millions of logical gates, we need to restrict the degrees of freedom. Static
verification of a large, complex design involving intertwined cores requires reverse engineering,
which is highly impractical because many companies keep the necessary details about their bit-
streams a closely guarded trade secret.

quality of the routing results by collecting the area and the
timing performance based on the critical path of the mapped
application. To be fair, all the routing tracks are config-
ured using the same tri-state buffered switches with Wilton
connection patterns [52] within the switch box. A Wilton
switch box provides a good trade-off between routability
and area, and is commonly used in FPGA routing architec-
tures.
Figures 5 and 6 show the experimental results, where we

provide the average hardware area cost and critical path per-
formance for all the benchmarks over four configurations.
The existence of longlines has little impact on the final qual-
ity of the mapped circuits. However, significant degradation
occurs when we eliminate segments of length 2 and 6. This
is caused by the increased demand for switch boxes, result-
ing in a larger hardware cost for these additional switch re-
sources. Moreover, the signal from one pin to another pin is
more likely to pass more switches, resulting in an increase
in the critical path timing. If we eliminate hex and long
lines, there is a 14.9% area increase and an 18.9% increase
in critical path delay, on average. If the design performance
is limited directly by the cycle time, the delay in critical
path translates directly into slowdown.

3.4 Overall Area Impact

While the results from Figures 5 and 6 show that there
is some area impact from constraining the routing, there is
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also a direct area impact in the form of resources required
to implement the actual moats themselves. Assuming that
we have a fixed amount of FPGA real estate, we really care
about how much of that area is used up by a combination
of the moats and the core inflation due to restricted routing.
We can call this number the effective utilization. Specifi-
cally, the effective utilization is:

Ueff =
AAllRoutes

ARestrictedRoutes + AMoats

Figure 7 presents the trade-offs between the moat size,
the number of isolated cores on the FPGA, and the utiliza-
tion of the FPGA. The FPGA used for these calculations
was a Xilinx Virtex-4 Device which has 192 CLB rows
and 116 CLB columns. The figure examines three differ-
ent moat sizes: 1, 2 and 6 for a variable number of cores on
the chip (conservatively assuming that a moat is required
around all cores). As the number of cores increases, the uti-
lization of the FPGA decreases since the area of the moats,
which is unusable space, increases. However, when a small
number of cores is used, a larger moat size is better because
it allows us to make more efficient use of the non-moat parts
of the chip. If you just need to isolate a single core (from the
I/O pads) then a moat of width 6 is the best (consuming 12%
of the chip resources). However, as the curve labeled “Moat
Size = 2” in Figure 7 shows, a moat width of two has the op-
timal effective utilization for designs that have between two
and 120 cores. As a point of reference, it should be noted
that a modern FPGA can hold on the order of 100 stripped
down microprocessor cores. The number of cores is heav-
ily dependent on the application, and the trade-off presented
here is somewhat specific to our particular platform, but our
analysis method is still applicable to other designs. In fact,
as FPGAs continue to grow according to Moore’s Law, the

percent overhead for moats should continue to drop. Be-
cause the moats are perimeters, as the size of a core grows
by a factor of n, the cost of the moat only grows byO(

√
n).

3.5 Effective Scrubbing and Reuse of Re-
configurable Hardware

Moats allow us to reason about isolation without any
knowledge of the inner workings of cores, which are far too
complex to feasibly determine whether a particular element
of a core is connected to another core. Furthermore, moats
also allow us to isolate cores designed with a less trustwor-
thy tool chain from cores that are the result of a more trust-
worthy tool chain. While these are both useful properties,
we need to make sure we can actually implement them. In
fact, a few of the latest FPGAs available have the ability to
change a selective part of their configuration, one column at
a time [34]. A specialized core on the FPGA can read one
frame of the configuration, change part of this frame, and
write the modified frame back. This core must therefore be
part of the trusted computing base of the system.
Partial reconfiguration improves the flexibility of a sys-

tem by making it possible to swap cores. If the number of
possible configurations is small, then static verification is
sufficient, but if the space of possible cores is infinite, then
dynamic verification is necessary. For example, Baker et
al. have developed an intrusion detection system based on
reconfigurable hardware that dynamically swaps the detec-
tion cores [2] [1]. Since the space of intrusion detection
rule sets is infinite, the space of detection cores is also in-
finite. Huffmire et al. have developed a memory protec-
tion scheme for reconfigurable hardware in which a recon-
figurable reference monitor enforces a policy that specifies
the legal sharing of memory [19]. Partial reconfiguration
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Figure 5. Comparison of area for different
configurations of routing segments. The
baseline system has segments with length 1,
2, 6 and longline. The distribution is close
to that of Virtex II: 8% (1), 20% (2), 60% (6)
and 12% (longline). Other configurations are
created by eliminating one or more classes
of segments. For example, configuration 1-2-
6 removes the longlines and distributes them
proportionally to other types of segments.
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Figure 6. Comparison of critical path timing
for different configurations of routing seg-
ments. Unlike Figure 7, the graphs in Figures
5 and 6 do not include the overhead of the
moat itself. The error bars show one standard
deviation.

could allow the system to change the policy being enforced
by swapping in a different reference monitor. Since the
space of possible policies is infinite, the space of possible
reference monitors is also infinite. Lysaght and Levi have
devised a dynamically reconfigurable crossbar switch [33].
By using dynamic reconfiguration, their 928x928 crossbar
uses 4,836 CLBs compared to the 53,824 CLBs required
without reconfiguration.

To extend our model of moats to this more dynamic case,
we not only need to make sure that our static analysis must
be simple enough to be performed on-line by a simple em-
bedded core (which we argue it is), but we also need to make
sure that nothing remains of the prior core’s logic when it
is replaced with a different core. In this section, we de-
scribe how we can enable object reuse through configura-
tion cleansing.

By rewriting a selective portion of the configuration bits
for a certain core, we can erase any information it has stored
in memory or registers. The ICAP (Internal Configuration
Access Port) on Xilinx devices allows us to read, modify,
and write back the configuration bitstream on Virtex II de-
vices. The ICAP can be controlled by a Microblaze soft
core processor or an embedded PowerPC processor if the
chip has one. The ICAP has an 8-bit data port and typi-
cally runs at a clock speed of 50 MHz. Configuration data
is read and written one frame at a time. A frame spans the
entire height of the device, and frame size varies based on

the device.

Table 1 gives some information on the size and number
of frames across several Xilinx Virtex II devices. The small-
est device has 404 frames, and each frame requires 5.04 us
to reconfigure, or equivalently, erase. Therefore, reconfig-
uring (erasing) the entire devices takes around 2 ms.

To sanitize a core we must perform 3 steps. First we must
read in a configuration frame. The second step is to modify
the configuration frame so that the flip-flops and memory
are erased. The last step is to write back the modified con-
figuration frame. The number of frames and how much of
the frame we must modify depend on the size of the core
that is being sanitized. This process must be repeated since
each core will span the width of many frames. In general,
the size of the core is linearly related to the time that is
needed to sanitize it.

Our object reuse technique can also disable a core if ex-
treme circumstances should require it, such as tampering.
Embedded devices such as cell phones are very difficult to
sanitize [38]. Smart phones contain valuable personal data,
and the theft or loss of a phone can result in serious conse-
quences such as identity theft. Embedded devices used by
the military may contain vital secrets that must never fall
into enemy hands. Furthermore, valuable IP information of
the cores is stored in the form of the bitstream on the FPGA.
A method of disabling all or part of the device is needed to
protect important information stored on the FPGA in the



Table 1. Reconfiguration Time

Device # Frames Frame Length (32-bit words) R/W time for 1 frame (ICAP@50 Mhz)
XC2V40 404 26 5.04 us
XC2V500 928 86 14.64 us
XC2C2000 1456 146 24.24 us
XC2V8000 2860 286 46.64 us

extreme case of physical tampering.
The IBM 4758 is an example of a cryptographic copro-

cessor that has been designed to detect tampering and to
disable itself whenever tampering occurs [51]. The device is
surrounded by specialized packaging containing wire mesh.
Any tampering of the device disturbs this mesh, and the de-
vice can respond by disabling itself.

4 Drawbridges: Interconnect Interface Con-
formance with Tracing

In the previous section, we described an effective method
for isolating cores using moats. Our moat methodology
eliminates the possibility for external cores to tap into the
information contained in a core surrounded by the moat.
However, cores do not work in isolation and must commu-
nicate with other cores to receive and send data. Therefore,
we must allow controlled entry into our core. The entry or
communication is only allowed with prespecified transac-
tions through a “drawbridge”. We must know in advance
which cores we need to communicate with and the location
of those cores on the FPGA. Often times, it is most effi-
cient to communicate with multiple cores through a shared
interconnection (i.e., a bus). Again, we must ensure that
bus communications are received by only the intended re-
cipient(s). Therefore, we require methods to ensure that 1)
communication is established only with the specified cores
and 2) communication over a shared medium does not re-
sult in a covert channel. In this section, we present two
techniques, interconnect tracing and a bus arbiter, to handle
these two requirements.
We have developed an interconnect tracing technique for

preventing unintended flows of information on an FPGA.
Our method allows a designer to specify the connections on
a chip, and a static analysis tool checks that each connec-
tion only connects the specified components and does not
connect with anything else. This interconnect tracing tool
takes a bitstream file and a text file that defines the modules
and interconnects in a simple language which we have de-
veloped. The big advantage of our tool is that it allows us to
perform the tracing on the bitstream file. We do not require
a higher level description of the design of the core. Per-
forming this analysis during the last stage of design allows

us to catch illegal connections that could have originated
from any stage in the design process including the design
tools themselves.
In order for the tracing to work we must know the loca-

tions of the modules on the chip and the valid connections
to/from the modules. To accomplish this we place moats
around the cores during the design phase. We now know the
location of the cores and the moats, and we use this infor-
mation to specify a text file that defines: all the cores along
with their location on the chip, all I/O pins used in the de-
sign, and a list of valid connections. Then our tool uses the
JBits API [13] to analyze the bitstream and check to make
sure there are no invalid connections in the design. The pro-
cess of interconnect tracing is performed by analyzing the
bitstream to determine the status of the switchboxes. We
can use this technique to trace the path that a connection is
routed along and ensure that it goes where it is supposed to.
This tracing technique allows us to ensure that the different
cores can only communicate through the channels we have
specified and that no physical trap doors have been added
anywhere in the design.
Ensuring that interconnects between modules are secure

is a necessity to developing a secure architecture. This prob-
lem is made more complicated by the abundance of routing
resources on an FPGA and the ease with which they can be
reconfigured. Our proposed interconnect tracing technique
allows us to ensure the integrity of connections on a recon-
figurable device. This tool gives us the ability to perform
checking in the final design stage: right before the bitstream
is loaded onto the device.

4.1 Efficient Communication under the
Drawbridge Model

In modern reconfigurable systems, cores communicate
with each other via a shared bus. Unfortunately, the shared
nature of a traditional bus architecture raises several secu-
rity issues. Malicious cores can obtain secrets by snooping
on the bus. In addition, the bus can be used as a covert chan-
nel to leak secret data from one core to another. The ease
of reconfigurability on FPGAs allows us to address these
problems at the hardware level.
To address this problem of covert channels and bus

snooping, we have developed a shared memory bus with
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a time division access. The bus divides the time equally
among the modules, and each module can read/write one
word to/from the shared memory during its assigned time
slice. Our approach of arbitrating by time division elimi-
nates covert channels. With traditional bus arbitration, there
is a possibility of a bus-contention covert channel to exist in
any shared bus system where multiple cores or modules ac-
cess a shared memory. Via this covert channel, a malicious
core can modulate its bus references, altering the latency of
bus references for other modules. This enables the transfer
of information between any two modules that can access the
bus [18]. This covert channel could be used to send infor-
mation from a module with a high security clearance to a
module with lower security clearance (write-down), which
would violate a Bell-LaPadula multilevel policy and can-
not be prevented through the use of the reference monitor.
To eliminate this covert channel, we give each module an
equal share of time to use the bus, eliminating the transfer
of information by modulating bus contention. Since each
module can only use the bus during its alloted time slice,
it has no way of changing the bus contention. One module
cannot even tell if any of the other modules are using the
bus. While this does limit performance of the bus, it re-
moves the covert channel. The only other feasible way that
we see to remove this covert channel is to give each mod-
ule a dedicated connection to all other modules. Requiring
a dedicated direct connection between each set of modules
that need to communicate would be inefficient and costly.
Dedicated channels would require a worst case of O(2n)
connections, where n is the number of modules in the de-
sign. Our architecture requires only O(n) connections.

Bus snooping is another major concern associated with a
shared bus. Even if we eliminate the covert channels there
is nothing to prevent bus snooping. For example, let us con-
sider a system where we want to send data from a classified
module to another and where there are unclassified modules

on the same bus. We need a way to ensure that these less
trusted modules cannot obtain this information by snooping
the bus. To solve this problem, we place an arbiter between
the module and the memory. The arbiter only allows each
module to read during its time share of the bus. In addition
a memory monitor is required, but for this work we assume
that such a configuration can be implemented on the FPGA
using the results of Huffmire et. al.[19]

4.2 Architecture Alternatives

We devised two similar architectures to prevent snoop-
ing and to eliminate covert channels on the bus. In our first
architecture, each module has its own separate connection
to a single arbiter, which sits between the shared memory
and the modules. This arbiter schedules access to the mem-
ory equally according to a time division scheduling (Figure
8). A module is only allowed to read or write during its al-
loted time, and when a module reads, the data is only sent to
the module that issued the read request. The second archi-
tecture is more like a traditional bus. In this design, there
is an individual arbiter that sits between each module and
the bus. These arbiters are all connected to a central timing
module which handles the scheduling (Figure 9). The in-
dividual arbiters work in the same way as the single arbiter
in the first architecture to prevent snooping and to remove
covert channels. To make interfacing easy, both of these
architectures have a simple interface so that a module can
easily read/write to the shared memory without having to
worry about the timing of the bus arbiter.
During the design process, we found that the first archi-

tecture seemed easier to implement, but we anticipated that
the second architecture would be more efficient. In our first
architecture (Figure 8, everything is centralized, making the
design of a centralized memory monitor and arbiter much
easier to design and verify. In addition, a single moat could



be used to isolate this functionality. Our second architec-
ture (Figure 9) intuitively should be more scalable and effi-
cient since it uses a bus instead of individual connections for
each module, but the arbiters have to coordinate, the mem-
ory monitor has to be split (if that is even possible), and
each arbiter need to be protected by its own moat.
To test our hypotheses, we developed prototypes of both

of the architectures. The prototypes were developed in
VHDL and synthesized for a Xilinx Virtex-II device in or-
der to determine the area and performance of the designs
on a typical FPGA. We did not account for the extra moat
or monitor overhead, but with this assumption results of the
analysis of the two architectures, which can be seen in Ta-
ble 2, were not what we first expected. During synthesis of
the second architecture, the synthesis tool converted the tri-
state buffers6 in the bus to digital logic. As a result, the sec-
ond architecture used more area than the first and only had
a negligible performance advantage. Contrary to what we
expected, the first architecture used roughly 15% less area
on the FPGA and is simpler to implement and verify. Since
the peformance difference between the two was almost neg-
ligible, the first architecture is the better design choice.
This bus architecture allows modules to communicate se-

curely with a shared memory and prevents bus snooping and
certain covert channels. When combined with the reference
monitor this secure bus architecture provides a secure and
efficient way for modules to communicate.

5 Application: Memory Policy Enforcement

Now that we have described isolation and its related
primitives, we provide an example of the application of iso-
lation to memory protection, an even higher-level primitive.
Saltzer and Schroeder identify three key elements that are
necessary for protection: “Conceptually, then, it is neces-
sary to build an impenetrable wall around each distinct ob-
ject that warrants separate protection, construct a door in
the wall through which access can be obtained, and post a
guard at the door to control its use.” [43]. In addition, the
guard must be able to identify the authorized users. In the
case of protecting cores, our moat primitive is analogous to
the wall, and our drawbridge primitive is analogous to the
door. Our interconnect tracing and secure bus primitives act
as the guard.
One way of protecting memory in an FPGA system is

to use a reference monitor that is loaded onto the FPGA
along with the other cores [19]. Here, the reference monitor
is analogous to the guard because it decides the legality of
every memory access according to a policy. This requires
that every access go through the reference monitor. Without

6tri-state buffers are gates that can output either a 0, 1, or Z – a high
impedance state in which the gate acts as if it was disconnected from the
wire.

our isolation primitive, it is easy for a core to bypass the
reference monitor and access memory directly. Since moats
completely surround a core except for a small amount of
logic (the drawbridge) for communicating with the rest of
the chip, it is much easier to prevent a core from bypassing
the reference monitor.
Saltzer and Schroeder describe how protection mecha-

nisms can protect their own implementations in addition to
protecting users from each other [43]. Protecting the ref-
erence monitor from attack is critical to the security of the
system, but the fact that the reference monitor itself is re-
configurable makes it vulnerable to attack by the other cores
on the chip. However, moats can mitigate this problem by
providing physical isolation of the reference monitor.
Our isolation primitive also makes it harder for an unau-

thorized information flow from one core to another to oc-
cur. Establishing a direct connection between the two cores
would clearly thwart the reference monitor. If moats sur-
round each core, it is much harder to connect two cores di-
rectly without crossing the moat.
As we described above, a reference monitor approach

to memory protection requires that every memory access
go through the reference monitor. However, cores are con-
nected to each other and to main memory by means of a
shared bus. As we explained in Section 4.1, the data on a
shared bus is visible to all cores. Our secure bus primitive
protects the data flowing on the bus by controlling the shar-
ing of the bus with a fixed time division approach.
A memory protection system that allows dynamic pol-

icy changes requires an object reuse primitive. It is often
useful for a system to be able to respond to external events.
For example, during a fire, all doors in a building should
be unlocked without exception (a more permissive policy
than normal), and all elevators should be disabled (a less
permissive policy than normal). In the case of an embedded
device, a system under attack may wish to change the policy
enforced by its reference monitor. There are several ways to
change polices. One way is to overwrite the reference mon-
itor with a completely different one. Our scrubbing prim-
itive can ensure that no remnants of the earlier reference
monitor remain. Since cores may retain some information
in their local memory following a policy change, our scrub-
bing primitive can also be used to cleanse the cores.

6 Related Work

There has always been an important relationship be-
tween the hardware a system runs on and the security of that
system. Reconfigurable systems are no different, although
to the best of our knowledge we are the first to address the
problem of isolation and physical interface conformance on
them. However, in addition to the related work we have al-
ready mentioned, we do build on the results of prior related



Table 2. Comparison of Communication Architectures

Architecture 1 Architecture 2 Percent Difference
Slices 146 169 15.75

Flip Flops 177 206 16.38
4 Input LUTs 253 305 20.55

Maximum Clock Frequency 270.93 271.297 0.14

efforts. In particular, we build on the ideas of reconfigurable
security, IP protection, secure update, covert channels, di-
rect channels, and trap doors. While a full description of all
prior work in these areas is not possible, we highlight some
of the most related.

6.1 Reconfigurable Hardware Security

The closest work to ours is the work of Huffmire et. al.
To provide memory protection on an FPGA, Huffmire et
al. propose the use of a reconfigurable reference monitor
that enforces the legal sharing of memory among cores [19].
A memory access policy is expressed in a specialized lan-
guage, and a compiler translates this policy directly to a cir-
cuit that enforces the policy. The circuit is then loaded onto
the FPGA along with the cores. While their work addresses
the specifics of how to construct a memory access moni-
tor efficiently in reconfigurable hardware, they do not ad-
dress the problem of how to protect that monitor from rout-
ing interference, nor do they describe how to enforce that
all memory accesses go through this monitor. This paper
directly supports their work by providing the fundamental
primitives that are needed to implement memory protection
on a reconfigurable device.
There appears to be little other work on the specifics

of managing FPGA resources in a secure manner. Chien
and Byun have perhaps the closest work, where they ad-
dressed the safety and protection concerns of enhancing
a CMOS processor with reconfigurable logic [8]. Their
design achieves process isolation by providing a reconfig-
urable virtual machine to each process, and their architec-
ture uses hardwired TLBs to check all memory accesses.
Our work could be used in conjunction with theirs, using
soft-processor cores on top of commercial off-the-shelf FP-
GAs rather than a custom silicon platform. In fact, we be-
lieve one of the strong points of our work is that it may
provide a viable implementation path to those that require a
custom secure architecture, for example execute-only mem-
ory [31] or virtual secure co-processing [29].
Gogniat et al. propose a method of embedded system

design that implements security primitives such as AES en-
cryption on an FPGA, which is one component of a secure
embedded system containing memory, I/O, CPU, and other
ASIC components [12]. Their Security Primitive Controller

(SPC), which is separate from the FPGA, can dynamically
modify these primitives at runtime in response to the de-
tection of abnormal activity (attacks). In this work, the re-
configurable nature of the FPGA is used to adapt a crypto
core to situational concerns, although the concentration is
on how to use an FPGA to help efficiently thwart system
level attacks rather than chip-level concerns. Indeed, FP-
GAs are a natural platform for performing many crypto-
graphic functions because of the large number of bit-level
operations that are required in modern block ciphers. How-
ever, while there is a great deal of work centered around
exploiting FPGAs to speed cryptographic or intrusion de-
tection primitives, systems researchers are just now start-
ing to realize the security ramifications of building systems
around hardware which is reconfigurable.
Most of the work relating to FPGA security has been tar-

geted at the problem of preventing the theft of intellectual
property and securely uploading bitstreams in the field. Be-
cause such attacks directly impact their bottom line, indus-
try has already developed several techniques to combat the
theft of FPGA IP, such as encryption [6] [23] [24], finger-
printing [27], and watermarking [28]. However, establish-
ing a root of trust on a fielded device is challenging because
it requires a decryption key to be incorporated into the fin-
ished product. Some FPGAs can be remotely updated in
the field, and industry has devised secure hardware update
channels that use authentication mechanisms to prevent a
subverted bitstream from being uploaded [16] [15]. These
techniques were developed to prevent an attacker from up-
loading a malicious design that causes unintended function-
ality. Even worse, the malicious design could physically
destroy the FPGA by causing the device to short-circuit
[14]. However, these authentication techniques merely en-
sure that a bitstream is authentic. An “authentic” bitstream
could contain a subverted core that was designed by a third
party.

6.2 Covert Channels, Direct Channels,
and Trap Doors

The work in Section 4.1 directly draws upon the ex-
isting work on covert channels. Exploitation of a covert
channel results in the unintended flow of information be-
tween cores. Covert channels work via an internal shared



resource, such as power consumption, processor activity,
disk usage, or error conditions [47] [41]. Classical covert
channel analysis involves the articulation of all shared re-
sources on chip, identifying the share points, determining
if the shared resource is exploitable, determining the band-
width of the covert channel, and determining whether reme-
dial action can be taken [25]. Storage channels can be mit-
igated by partitioning the resources, while timing channels
can be mitigated with sequential access, a fact we exploit in
the construction of our bus architecture. Examples of reme-
dial action include decreasing the bandwidth (e.g., the intro-
duction of artificial spikes (noise) in resource usage [44]) or
closing the channel. Unfortunately, an adversary can extract
a signal from the noise, given sufficient resources [37].
Of course our technique is primarily about restricting the

opportunity for direct channels and trap doors [49]. Our
memory protection scheme is an example of that. With-
out any memory protection, a core can leak secret data by
writing the data directly to memory. Another example of a
direct channel is a tap that connects two cores. An uninten-
tional tap is a direct channel that can be established through
luck. For example, the place-and-route tool’s optimization
strategy may interleave the wires of two cores.

7 Conclusion

The design of reconfigurable systems is a complex pro-
cess, with multiple software tool chains that may have dif-
ferent trust levels. Since it is not cost-effective to develop an
optimized tool chain from scratch to meet assurance needs,
only the most sensitive cores should be designed using a
trusted tool chain. To meet performance needs, most cores
could be designed with commodity tools that are highly op-
timized but untrusted, which results in multiple cores on a
chip with different trust levels. Our methodology will not
lead to those less trusted portions becoming more depend-
able or correct, but it will isolate trusted portions from the
effects of their subversion or failure. To address this situ-
ation, developers will need to build monitored or fail-safe
systems on top of FPGAs to prevent the theft of critical se-
crets.
We have presented two low-level protection mechanisms

to address these challenges, moats and drawbridges, and
we have analyzed the trade-offs of each. Although larger
moats consume more area than smaller moats, they have
better performance because longer segments can be used.
Our interconnect tracing primitive works together with our
moat primitive in a complementary way by allowing smaller
moats to be used without sacrificing performance. We have
also described how these basic primitives are useful in the
implementation of a higher-level memory protection prim-
itive, which can prevent unintended sharing of information
in embedded systems.
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